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A B S T R A C T

In order to accurately simulate 13C NMR spectra of hydroxy, polyhydroxy and methoxy substituted

flavonoid a quantitative structure–property relationship (QSPR) model, relating atom-based calculated

descriptors to 13C NMR chemical shifts (ppm, TMS = 0), is developed. A dataset consisting of 50 flavonoid

derivatives was employed for the present analysis. A set of 417 topological, geometrical, and electronic

descriptors representing various structural characteristics was calculated and separate multilinear QSPR

models were developed between each carbon atom of flavonoid and the calculated descriptors. Genetic

algorithm (GA) and multiple linear regression analysis (MLRA) were used to select the descriptors and to

generate the correlation models. Analysis of the results revealed a correlation coefficient and root mean

square error (RMSE) of 0.994 and 2.53 ppm, respectively, for the prediction set.
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1. Introduction

Flavonoids are a large group of polyphenolic compounds of low
molecular weight possessing a basic flavan nucleus with two
aromatic rings (A and B rings) interconnected by a three-carbon-
atom heterocyclic ring (C ring). The most widespread flavonoids
contain a double bond between C-2 and C-3 (D2,3) and a keto
function at C-4 of ring C, which is attached to ring B at C-2 (flavone)
or at C-3 (isoflavone). As a result of a number of further
modifications on all three rings, particularly on ring C, flavonoids
represent one of the largest and the most diverse class of plant
secondary metabolites. These compounds are naturally present in
vegetables, fruits, chocolate, beverages, seeds, nuts and red wine as
well as herbal preparations [1–4]. Flavonoids are often hydro-
xylated in positions 3, 5, 7, 30, 40 and/or 50. Frequently, one or more
of these hydroxyl groups are methylated, acetylated, prenylated or
sulfated [5]. Up to now, more than 4000 different naturally
occurring flavonoid compounds are known and new ones are still
to be discovered [6–9]. A number of positive health effects of these
products such as antioxidant, anticoagulant, antiestrogenic,
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antiinflammatory (digestive tract), antimicrobial, or spasmolytic
are discussed for these compounds [3,10–12].

Many hydroxylated and methoxylated flavones have been
found from natural sources, and whenever they were isolated, they
have been identified by instrumental analysis. Because the
substitution of hydroxyl and methoxyl groups caused the changes
of the 1H and 13C chemical shifts, the complete 1H and 13C NMR
spectral assignments and structural elucidation of hydroxylated
and methoxylated flavones were possible, and these led us to
identify these compounds without further experiments [13–17]. If
it is possible to predict the carbon chemical shift from the
constitution of a molecule quickly and accurately, an automated
ranking of the structure generator results becomes possible.
Consequently the prediction of 13C chemical shifts plays an
important role in structure elucidation of flavonoids [18]. One
method of spectral simulation techniques for the identification of
chemical compounds and for the validation of their spectral
assignments involves developing mathematical models that relate
the 13C chemical shift of an atom to its structural environment.
Recently, many linear and non-linear chemometric methods
predicting 13C NMR chemical shifts of organic compounds have
been developed by means of artificial neural network [19–24]
algorithm or multiple linear regression [25,26].

Over the past several decades, the quantitative structure–
activity/property relationships (QSAR/QSPR) have become an
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important branch of modern chemistry for description and
prediction of properties of complex molecular systems in different
environments. The success of the QSAR/QSPR approach is critically
dependent on the accurate definition and appropriate use of
molecular descriptors. Molecular descriptors are numerical values
used to describe different characteristics of a certain structure in
order to yield information about the property/activity being
studied. It must be underlined that a necessary requirement for the
application of the QSAR/QSPR approach is the knowledge of the
exact chemical constitution and the three-dimensional molecular
structure of the chemical compounds being studied.

In most cases, it is more convenient that a linear relationship
between activity/property and descriptors is considered. Multiple
linear regression (MLR), principal component regression (PCR) and
partial least squares (PLS) are the most widely used linear modeling
methods in QSPR [27,28]. However, in MLR analysis, the number of
compounds in samples is initially required to be at least five times
the number of descriptors and the descriptors should be orthogonal
[29,30]. One of the main problems encountered in elaborating on
large data sets is the detection of the irrelevant variables (i.e.,
variables containing information) and the elimination of the noise.
Therefore, given the correlation of all the calculated descriptors, and
the impossibility of performing MLR, a variable selection procedure
is needed to select the predictive variables. Variable selection
methods range from simple methods such as stepwise technique
processes with forward inclusion or backward elimination [31] to
more sophisticated methods such as simulated annealing [32],
evolutionary programming [33] and genetic algorithms (GAs) [34].
GA, is a powerful tool which is recently used to optimize many
decision making problems [35,36], which were initially proposed by
Leardi et al. as strategy for variable subset selection in multivariate
calibration analysis [37].

In the current work, we will use the strong global search ability
of genetic algorithms to optimize QSPR models for predicting 13C
chemical shifts values. QSPR analyzes of 50 flavonoid derivatives
were performed using different theoretical molecular descriptors
by a GA-based MLR. Finally, the prediction capabilities of both
approaches are tested unambiguously by application of the models
to subsets of compounds excluding the calibration set.

2. Materials and methods

2.1. Software

A Pentium IV personal computer (CPU at 2.6 MB) under Windows
XP operating system, was used. Molecular modeling and geometry
optimization were employed by Hyperchem (version 7.0, Hyper-
Cube, Inc.). Dragon software [38] was employed for calculation of
theoretical molecular descriptors. SPSS software (version 13.0, SPSS,
Inc.) was used for MLR analysis. Genetic algorithm of MATLAB
(version 7.0, MathWorks, Inc.) is utilized and other calculations were
also performed in the MATLAB environment.

2.2. Experimental database set

Experimentally measured carbon-13 chemical shifts (CSexp) of
50 hydroxy and methoxy substituted flavonoid derivatives, each
containing 15 carbon atoms and consequently a total of 750
chemically non-equivalent carbon centers were obtained from the
literature [39,40]. This data set was selected in this study because
the chemical shifts values were measured under the similar
experimental conditions. The range of CSexp values was from 93.7
to 183.2 ppm relative to tetramethylsilane (TMS, 0 ppm) or
dimethylsulfoxide (DMSO, 39.50 ppm) as internal reference in
deuteride dimethylsulfoxide solvent (CD3SOCD3 or DMSO-d6). The
molecular structure, nomenclature and experimental 13C NMR
chemical shift values of all 750 atoms in the 50 flavonoid
derivatives examined are listed in Tables 1 and 2, respectively.

2.3. Calculation of structural descriptors

The molecular structures of all the flavonoid derivatives were
built with Hyperchem (Version 7, HyperCube, Inc.) software. AM1
semi-empirical calculation was used to optimize the 3D geometry
of the molecules. Different quantum chemical descriptors includ-
ing, heat of formation, dipole moment, HOMO and LUMO energies
and their combinations and local charges were calculated by the
software. The Polak-Ribier algorithm with root mean squares
gradient of 0.1 kcal/mol was selected for optimization. In order to
prevent the structures locating at local minima, geometry
optimization was run many times with different starting points
for each flavonoid derivative. Dragon software was employed to
calculate molecular descriptors. Dragon can compute up to 1612
descriptors, which may have very different complexity but can be
classified according to their ‘dimensionality’ in: zero-dimensional
(0D) or constitutional, 1D (e.g., empirical descriptors and
molecular properties), 2D (such as: 2D autocorrelations, topolo-
gical indices, BCUT descriptors, Galvez topological charges indices,
molecular walk counts) 3D (aromaticity indices, Randic molecular
profiles, charge-, geometrical-, RDF-, 3D-MoRSE-, GETAWAY-, and
WHIM-descriptors) molecular descriptors. A brief definition and
description of some of these molecular descriptors used in study
are given in Table 3. Thus the initial set of molecular descriptors
used as input for the modeling consists of 453 descriptors.

2.4. Selection of structural descriptors

The calculated molecular descriptors were collected in a data
matrix (D) whose number of rows and columns were the number
of molecules and descriptors, respectively. At the beginning, in
order to minimize the information overlap in descriptors and to
reduce the number of descriptors required in regression equation,
the concept of non-redundant descriptors (NRD) [41] was used in
our study. That is, when two descriptors are correlated by a linear
correlation coefficient value greater than 0.95, both descriptors are
correlated with the dependent variable, the better correlation is
used for the actual analysis, leaving out the descriptors showing a
lower correlation. This objective-based feature selection left
reduced and predictive descriptors for the studied compounds.

Using GA-based MLR feature selection procedures, the depen-
dent variables, i.e., the 13C NMR chemical shifts were used to find
subsets of molecular descriptors that provide a good relationship
to the carbon-13 chemical shifts. The genetic algorithm used was
the same as that previously used [42–44]. In GAs, the initial step is
to generate a random population (array), consisting of a predefined
number of individuals (rows) and variables (columns). Each
individual represents a subset of the original variables within
the larger superset of data under analysis. The next step in the GA is
analogous to the process of Darwinian evolution whereby, through
the processes of crossover, mutation and survival of the fittest,
individuals are selected for the next generation until a particular
stopping criterion has been reached. The GA uses an algorithm
known as a fitness function to assess the robustness of the model
proposed by each individual. This usually takes the form of a
minimization function; therefore the fittest individuals are those
with the lowest fitness value. The population size was varied
between 50 and 250 for different GA runs.

Typically, the evolutionary stage of a simple GA proceeds as
follows: (1) extract a proportion of the fittest individuals from the
current (parent) population, (2) recombine the selected offspring



Table 1
Molecular structures and nomenclature of the hydroxy- and methoxyl-flavone derivatives (validation set in bold) used in this study

Derivative Nomenclature R1 R2 R3 R4 R5 R6 R7 R8

1 Flavone H H H H H H H H

2 5-Hydroxyflavone OH H H H H H H H

3 6-Hydroxyflavone H OH H H H H H H

4 7-Hydroxyflavone H H OH H H H H H

5 5,7-Dihydroxyflavone/chrysin OH H OH H H H H H

6 7,8-Dihydroxyflavone H H OH OH H H H H

7 6,7-Dihydroxyflavone H OH OH H H H H H

8 5,6,7-Trihydroxyflavone/baicalein OH OH OH H H H H H

9 20-Hydroxyflavone H H H H OH H H H

10 7,20-Dihydroxyflavone H H OH H OH H H H

11 5,7,20-Trihydroxyflavone OH H OH H OH H H H

12 40-Hydroxyflavone H H H H H H OH H

13 5,40-Dihydroxyflavone OH H H H H H OH H

14 6,40-Dihydroxyflavone H OH H H H H OH H

15 7,40-Dihydroxyflavone H H OH H H H OH H

16 5,7,40-Trihydroxyflavone OH H OH H H H OH H

17 7,8,40-Trihydroxyflavone H H OH OH H H OH H

18 20 ,30-Dihydroxyflavone H H H H OH OH H H

19 20 ,40-Dihydroxyflavone H H H H OH H OH H

20 30 ,40-Dihydroxyflavone H H H H H OH OH H

21 5,30 ,40-Trihydroxyflavone OH H H H H OH OH H

22 6,30 ,40-Trihydroxyflavone H OH H H H OH OH H

23 7,30 ,40-Trihydroxyflavone H H OH H H OH OH H

24 5,7,30 ,40-Tetrahydroxyflavone/luteolin OH H OH H H OH OH H

25 7,8,30 ,40-Tetrahydroxyflavone H H OH OH H OH OH H

26 30 ,40 ,50-Trihydroxyflavone H H H H H OH OH OH

27 7,30 ,40 ,50-Tetrahydroxyflavone H H OH H H OH OH OH

28 8,30 ,40 ,50-Tetrahydroxyflavone H H H OH H OH OH OH

29 5,7,30 ,40 ,50-Pentahydroxyflavone OH H OH H H OH OH OH

30 7,8,30 ,40 ,50-Pentahydroxyflavone H H OH OH H OH OH OH

31 40-Methoxyflavone H H H H H H OCH3 H

32 5-Hydroxy-40-methoxyflavone OH H H H H H OCH3 H

33 6-Hydroxy-40-methoxyflavone H OH H H H H OCH3 H

34 7-Hydroxy-40-methoxyflavone/pratol H H OH H H H OCH3 H

35 5,7-Dihydroxy-40-methoxyflavone/acacetin OH H OH H H H OCH3 H

36 7,8-Dihydroxy-40-methoxyflavone H H OH OH H H OCH3 H

37 30 ,40-Dimethoxyflavone H H H H H OCH3 OCH3 H

38 5-Hydroxy-30 ,40-dimethoxyflavone OH H H H H OCH3 OCH3 H

39 6-Hydroxy-30,40-dimethoxyflavone H OH H H H OCH3 OCH3 H

40 7-Hydroxy-30 ,40-dimethoxyflavone H H OH H H OCH3 OCH3 H

41 5,7-Dihydroxy-30 ,40-dimethoxyflavone OH H OH H H OCH3 OCH3 H

42 6,7-Dihydroxy-30 ,40-dimethoxyflavone H OH OH H H OCH3 OCH3 H

43 7,8-Dihydroxy-30 ,40-dimethoxyflavone H H OH OH H OCH3 OCH3 H

44 30 ,40 ,50-Trimethoxyflavone H H H H H OCH3 OCH3 OCH3

45 5-Hydroxy-30 ,40,50-trimethoxyflavone OH H H H H OCH3 OCH3 OCH3

46 6-Hydroxy-30,40 ,50-trimethoxyflavone H OH H H H OCH3 OCH3 OCH3

47 7-Hydroxy-30,40 ,50-trimethoxyflavone H H OH H H OCH3 OCH3 OCH3

48 5,7-Dihydroxy-30 ,40 ,50-trimethoxyflavone OH H OH H H OCH3 OCH3 OCH3

49 6,7-Dihydroxy-30 ,40 ,50-trimethoxyflavone/prosogerin E H OH OH H H OCH3 OCH3 OCH3

50 7,8-Dihydroxy-30 ,40 ,50-trimethoxyflavone H H OH OH H OCH3 OCH3 OCH3
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(crossover), (3) mutate the mated population, (4) assess the newly
evolved offspring for fitness, (5) reinsert a proportion of the
offspring into the population, replacing the worst parents, and (6)
repeat the process until a stopping criterion is reached. The
stopping criterion can be defined in many different ways. For
example, it could be simply defined as a maximum number of
generations, a maximum target outcome value for the fitness, or as
a pre-specified number of generations for which the fitness value
for the fittest individual has remained constant.
3. Results and discussions

In the current QSPR study we initially calculate a multitude of
structural descriptors as mathematical representation of chemical
structure. For each of the 50 compounds, sharing 15 similar carbon
atoms in their structural backbone, a total of 453 calculated
structural features including constitutional descriptors, topologi-
cal descriptors, geometrical descriptors, quantum chemical
descriptors, physicochemical descriptors and liquid properties



Table 2
The 13C chemical shift of hydroxylated (1–30) and methoxylated (31–50) flavone derivatives in ppm in DMSO-d6

Derivative Position of the carbon

2 3 4 5 6 7 8 9 10 10 20 30 40 50 60

1 162.4 106.8 177.0 124.7 125.4 134.1 118.4 155.6 123.3 131.0 126.2 129.0 131.7 129.0 126.2

2 164.1 105.6 183.2 159.8 107.5 135.9 111.0 155.9 110.1 130.5 126.6 129.1 132.3 129.1 126.6

3 162.1 105.9 176.9 107.5 154.9 123.0 119.7 149.3 124.2 131.3 126.1 129.0 131.5 129.0 126.1

4 161.8 102.5 176.3 126.5 115.0 162.7 106.5 157.4 116.1 131.2 126.1 129.0 131.4 129.0 126.1

5 163.0 105.1 181.7 161.4 99.0 164.4 94.0 157.4 103.9 130.7 126.3 129.0 131.8 129.0 126.3

6 161.8 106.0 176.9 115.2 114.1 150.6 131.4 146.7 117.0 133.1 126.3 129.0 131.5 129.0 126.3

7 161.3 103.1 176.2 107.2 144.6 152.3 105.9 150.8 116.0 131.5 125.9 129.0 131.2 129.0 125.9

8 162.9 104.4 182.1 147.0 129.3 153.6 94.0 149.8 104.3 130.9 126.2 129.0 131.7 129.0 126.2

9 160.7 111.0 177.2 124.7 125.2 134.1 118.4 155.8 123.1 117.7 156.6 117.0 132.5 119.4 128.5

10 160.1 110.8 176.6 126.5 114.8 162.6 102.4 157.6 116.0 118.0 156.4 117.0 132.3 119.4 128.5

11 161.3 109.1 181.9 161.4 98.8 164.3 93.9 157.5 109.1 117.3 156.7 117.1 132.8 119.5 128.5

12 163.1 104.9 176.9 125.3 124.8 133.9 118.3 155.4 123.4 121.7 128.4 116.0 161.0 116.0 128.4

13 163.5 103.2 182.9 161.4 107.2 135.5 110.7 155.7 109.8 120.9 128.7 115.9 159.8 115.9 128.7

14 162.6 103.8 176.7 107.5 154.6 122.6 119.5 149.1 124.1 121.7 128.1 115.8 160.7 115.8 128.1

15 162.3 104.4 176.2 126.4 114.7 162.4 102.4 157.3 116.0 121.7 128.0 115.8 160.6 115.8 128.0

16 164.0 102.7 181.6 161.4 98.7 163.6 93.9 157.2 103.6 121.1 128.4 115.8 161.1 115.8 128.4

17 162.2 103.9 176.7 114.9 113.7 150.2 132.9 146.4 116.8 121.9 128.2 115.7 160.6 115.7 128.2

18 161.2 111.0 177.2 124.7 125.2 134.1 118.4 155.9 123.2 118.3 145.4 146.0 117.6 119.2 118.5

19 161.1 109.0 177.2 124.6 125.0 133.8 118.3 155.7 123.2 109.0 158.6 103.3 161.5 108.0 129.8

20 164.2 104.8 176.8 133.9 125.2 135.7 118.7 155.5 123.4 121.9 113.3 145.7 149.4 116.0 124.7

21 164.7 103.3 182.7 159.8 107.1 135.5 110.7 155.7 109.8 121.1 113.5 145.7 150.0 116.0 119.3

22 162.8 103.8 176.6 107.5 154.6 122.6 118.6 149.1 124.1 122.1 113.2 145.6 149.1 115.9 119.5

23 162.5 102.3 176.2 126.4 114.7 162.5 104.4 157.2 116.0 122.1 113.1 145.5 149.0 115.9 118.4

24 163.8 102.8 181.6 161.4 98.7 164.1 93.7 157.2 103.6 121.4 113.2 145.6 149.6 115.9 118.9

25 162.3 103.8 176.6 114.9 113.3 150.1 133.0 146.6 116.9 122.3 113.6 145.6 149.0 115.8 118.6

26 163.6 102.1 176.7 124.3 135.7 137.9 118.0 154.3 124.6 121.1 107.3 145.7 137.9 145.7 107.3

27 163.1 104.8 176.6 126.8 115.1 162.8 102.5 157.6 116.3 121.4 105.7 146.5 137.5 146.5 105.7

28 164.2 103.2 181.6 161.6 99.0 164.2 93.9 157.5 104.0 120.8 106.0 146.5 137.9 146.5 106.0

29 164.0 102.8 181.8 161.4 98.7 162.8 93.7 157.3 103.8 121.6 105.6 146.3 137.8 146.3 105.6

30 162.6 103.9 176.5 114.8 113.6 150.0 133.1 146.7 117.0 121.3 105.6 146.2 137.2 146.2 105.6

31 162.7 105.4 176.9 125.3 124.7 134.1 118.4 155.6 123.2 123.3 128.2 114.6 162.1 114.6 128.2

32 164.2 104.0 183.0 159.9 107.5 135.7 110.9 155.9 109.9 122.6 128.6 114.6 162.6 114.6 128.6

33 162.2 104.4 176.8 105.5 154.7 122.8 119.6 149.2 123.4 124.1 128.0 114.5 161.9 114.5 128.0

34 162.0 102.5 176.2 126.4 114.8 162.6 105.1 157.4 116.1 123.4 127.9 114.5 162.9 114.5 127.9

35 163.1 103.4 181.7 161.4 98.8 164.1 93.9 157.2 103.6 122.7 128.2 114.4 162.2 114.4 128.2

36 164.8 104.6 176.8 115.0 113.8 150.4 133.0 146.5 116.9 123.2 128.1 114.4 161.8 114.4 128.1

37 162.4 105.7 176.9 125.3 124.7 134.0 118.4 155.6 123.3 123.3 109.5 149.0 152.0 111.7 119.9

38 164.1 104.2 183.0 155.7 107.4 135.6 110.8 159.8 109.9 122.6 109.4 148.9 152.3 111.6 120.3

39 162.2 104.7 176.8 107.4 154.7 122.7 119.6 149.2 123.5 124.1 109.2 148.9 151.7 111.6 119.7

40 162.0 102.6 176.3 126.4 114.8 162.6 105.4 157.4 116.1 123.4 109.3 149.0 151.7 111.7 119.4

41 163.2 103.8 181.8 161.4 98.8 164.2 94.0 157.1 103.8 122.8 109.4 148.9 152.1 111.6 120.0

42 162.6 104.9 176.9 119.7 144.3 157.6 107.4 146.2 122.9 128.0 114.2 148.8 151.8 116.8 120.0

43 161.8 104.9 176.8 115.1 113.8 150.5 132.9 146.6 116.9 123.8 109.6 148.9 151.7 111.7 119.9

44 162.3 103.9 177.0 125.4 124.6 134.1 118.6 155.5 123.2 126.3 106.7 153.1 140.4 153.1 106.7

45 163.9 104.4 183.2 155.8 107.6 135.0 110.9 159.8 110.0 125.7 105.5 153.3 141.1 153.3 105.5

46 162.0 104.0 177.0 107.4 154.8 122.9 119.9 149.3 124.2 126.7 105.8 153.2 140.4 153.2 105.8

47 162.6 102.7 176.4 126.4 107.3 161.8 106.5 157.4 114.8 126.2 103.5 153.2 140.4 153.2 103.5

48 162.9 104.9 181.8 161.3 98.9 164.3 94.2 157.3 103.7 125.3 104.0 153.1 140.6 153.1 104.0

49 161.2 103.3 176.2 107.5 144.5 152.2 105.8 150.7 116.0 126.9 103.7 153.1 140.1 153.1 103.7

50 161.6 104.3 176.9 116.8 114.0 150.7 132.8 146.7 115.2 126.8 106.1 153.1 140.3 153.1 106.1
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were generated (Table 3). There are 50 types of flavonoid
derivatives whose basic structures contain 15 centers of carbons
namely from 2 to 10 and 10 to 60 (see Table 1).

At first, multiple linear regression analysis with stepwise
selection and elimination of variables was employed to model the
13C chemical shifts with different set of descriptors. However, this
procedure did not produce good results. Taking advantage of GA-
based MLR feature selection procedures, the best subsets of
molecular descriptors that provide a good relationship with the
chemical shift for each carbon center were derived.

3.1. GA-MLR modes

For each position of carbon atom center which is labeled 2 to 10
and 10 to 60 in Tables 1 and 3, a subset of most informative
molecular descriptors was selected by GA to build the relationship
between molecular structure and chemical shift by MLR analysis.
The resulted QSPR models obtained for each carbon atom are given
in Table 4. These models contain 54 different molecular descriptors
in which the symbols and definitions selected and used in this
study are shown in Table 5. Some statistical parameters such as
squared correlation coefficients (R2), root-mean-square error
(RMS), relative error of prediction (REP) and Fisher statistic ratio
(F) are included in Table 4 for the best fitted equations. As can be
seen, for all type of carbon centers the QSPR models presented in
Table 4 indicate that the MLR models have good statistical qualities
with low prediction error.

3.2. Model prediction-validation

To demonstrate that the resulted models have good prediction
abilities for 13C chemical shifts property, the prediction abilities for
the external samples have to be further tested with three different
methods. In order to assess the predictive ability and to check the



Table 3
Brief description of the molecular descriptors used in this study

Descriptor type Molecular descriptors

Constitutional Molecular weight, chemical composition (wt.% of C, H, O, N, S, Cl, F in molecular mass), atom count

(C, H, N, S, Cl, F, O), no. of bonds, no. of multiple bonds, no. of aromatic bonds, no. of functional groups

(amine, aldehyde, amide, carbonyl, carboxylate, cyano, ether, hydroxyl, methyl, methylene, nitro, nitroso,

sulfide, sulfone, sulfoxide and thio), no. of rings, no. of circuits, no. of H-bond

donors, no. of H-bond acceptors, chemical composition, etc.

Topological indices Kier and Hall connectivity indices (x0–x2) and valence connectivity indices (x0V–x2V), molecular size index,

molecular connectivity indices, information contents, total walk count, path/walk-Randic shape indices,

Zagreb indices, Schultz indices, Balaban J index, Wiener indices, topological

charge indices, topological shape indices (k0–k2), etc.

Molecular walk counts Molecular walk counts of order 1–10, self-re-turning of order 1–10, etc.

Burden eigenvalues Positive and negative Burden eigenvalues weighted by atomic polarizability, atomic, Sanderson electronegativity

or atomic van der Waals volume, etc.

Two-dimensional autocorrelation Broto-Moreau autocorrelation of a topological structure, Moran autocorrelation, Geary autocorrelation,

H-autocorrelation weighted by atomic polarizability, atomic Sanderson electronegativity or atomic van der

Waals volume, leverage autocorrelation weighted by atomic polarizability,

atomic Sanderson electronegativity or atomic van der Waals volume, R-autocorrelation weighted by atomic

polarizability, atomic Sanderson electronegativity or atomic van der Waals volume, etc.

Quantum chemical Highest occupied molecular orbital energy (EHOMO), lowest unoccupied molecular orbital energy

(ELUMO), partial charges, etc.

WHIM Unweighted size, shape, symmetry and accessibility directional indices; size, shape, symmetry and accessibility

directional indices weighted by atomic polarizability, atomic Sanderson electronegativity or atomic van der Waals

volume; total size, shape symmetry and accessibility indices, etc.

Chemical descriptors Log P, hydration energy, polarizability, molar refractivity, molecular volume, molecular surface area, polar surface

area, parachor, density, molecular mass, surface tension, pKa, pK0
a , etc.

Three-dimensional and geometrical 3-D MoRSE signal weighted by atomic polarizability, atomic Sanderson electronegativity or atomic van der

Waals volume, 3D-Wiener index, solvent accessible surface, molar volume, average geometric distance degree,

maximal electrotopological negative/positive variation, etc.
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statistical significance of the developed model, Leave-one-out
cross-validation (LOO-CV) and external validation (EV) procedures
are used.

3.2.1. Leave-one-out cross-validation

In LOO-CV procedure, n � 1 samples from a total data set were
chosen to construct a QSPR model between the descriptors and the
Table 4
Multivariate linear regression models and statistical parameters of different 13C NMR c

Position of the carbon Equation

C2 CSC2 = 191.7(�3.9) � 46.6(�3.0) R6m+ � 11.6(�1.1) Mor25v

ATS6m + 48.1(�9.0) H7m � 8.3(�1.3) BEHm8 � 7.7(�2.1) HA

C3 CSC3 = 206.6(�10.0) � 83.5(�9.9) SPH � 36.8(�7.8) JGI1 + 3.

Mor12e + 11.4(�2.7) Mor23m � 40.7(�12.5) G3s

C4 CSC4 = 71.3(�6.3) + 349.8(�20.1) qpos � 1.1(�0.1) RDF070m

TIE + 2.6(�0.5) Mor04m � 9.0(�1.5) Mor19v

C5 CSC5 = 2177.0(�263.4) + 2547.0(�127.1) qpos � 858.9(�79.1

0.09(�0.01) TIE + 41.28(�7.05) H4u � 152.38(�36.72) R6u+

C6 CSC6 = 2029.1(�138.1) � 1924.8(�123.4) qpos + 98.0(�14.4)

352.4(�30.1) H5m � 484.1(�47.4) BEHv4

C7 CSC7 = 105.9(�7.1) + 9.1(�0.6) RDF070m + 71.8(�6.9) Mor08

Mor02m + 20.0(�5.2) R7e + 0.03(�0.03) TIE

C8 CSC8 = 497.2(�34.6) � 0.07(�0.01) TIE + 69.6(�5.7) Mor25m

Mor02v + 2.6(�0.4) RDF045u � 126.3(�50.5) G3p

C9 CSC9 = 4.3(�0.2) + 1392.9(�171.0) X4A + 90.9(�9.3) R7m � 6

Mor30m + 26.0(�3.5) Mor30u � 36.8(�10.0) ATS4m

C10 CSC10 = 155.8(�5.3) � 141.0(�15.3) ATS4m + 72.2(�6.0) R6e

TIE + 25.9(�5.7) Mor09m + 79.2(�14.3) Mor29v

C10 CSC10 = 334.6(�9.7) � 14.0(�0.7) PCR + 0.3(�0.1) RDF060e �
5.6(�0.8) Mor04m � 3.4(�0.9) Mor10u

C20 CSC20 = �127.9(�5.2) � 8.8(�0.4) Mor02m + 27.1(�2.0) RDF0

1770.7(�257.2) X3A + 32.5(�5.5) GGI5

C30 CSC30 = �12.5(�1.6) + 113.4(�4.6) MATS7e + 16.1(�1.1) L2s

Mor11m + 24.8(�3.4) IC5

C40 CSC40 = �0.3(�0.1) + 163.1(�9.8) ASP + 24.9(�1.9) GATS7e +

MATS7v + 17.6(�3.9) MATS8e � 23.7(�4.9) Mor32m

C50 CSC50 = 413.8(�21.2) + 66.3(�5.4) R8u � 68.1(�4.2) IC5 + 66

MATS7e + 24.6(�2.9) Mor17u + 143.0(�18.9) R6m+

C60 CSC60 = 143.5(�1.0) � 4.9(�0.4) RDF090m � 223.0(�15.9) R7
13C chemical shift values, and the property of the left out sample
(removed) was estimated by the designed model. This procedure is
repeated until every sample in the total data set is used for a
prediction. Then, the prediction residual error sum of squares
(PRESS) and the sum of the squared deviation from the mean (SSD)
are calculated for each regression equation. The squared correla-
tion coefficient for cross-validation (R2

cv) is then calculated by the
hemical shift of flavone derivatives

R2 RMS REP F R2
cv

+ 11.8(�1.4)

TS6u

0.8712 0.38 0.24 48.5 0.8071

9(�1.0) 0.8673 0.78 0.74 57.5 0.8250

+ 0.008(�0.001) 0.9328 0.68 0.38 122.2 0.8949

) BEHm3 + 0.9275 5.40 4.08 112.5 0.8758

ASP + 0.9058 5.35 4.46 108.4 0.8796

m + 6.3(�0.7) 0.9298 3.87 2.64 116.7 0.9067

� 23.5(�2.0) 0.8828 4.22 3.78 66.5 0.8339

5.8(�9.8) 0.8504 1.65 1.08 50.0 0.8141

� 0.02(�0.00) 0.9178 2.06 1.78 97.9 0.8865

5.0(�0.7) GATS7e + 0.9256 1.20 0.97 109.5 0.8973

35m + 0.9532 3.74 3.10 230.0 0.9429

+ 43.0(�5.6) 0.9610 3.07 2.28 277.3 0.9513

38.9(�5.6) 0.9218 3.31 2.27 86.0 0.8981

.3(�5.36) 0.9572 3.09 2.45 197.0 0.9412

m+ � 13.4(�2.5) CIC5 0.9607 1.78 1.48 372.0 0.9491



Table 5
Description of some of the molecular descriptors used in the present study

Symbol Definition Class

BEHm3 Highest eigenvalue n. 3 of Burden matrix/weighted by atomic masses BCUT

BEHm8 Highest eigenvalue n. 8 of Burden matrix/weighted by atomic masses BCUT

BEHv4 Highest eigenvalue n. 4 of Burden matrix/weighted by atomic van der Waals volumes BCUT

Qpos Maximum positive charge Charge

GGI5 Topological charge index of order 5 Galvez charge

JGI1 Mean topological charge index of order 1 Galvez charge

TIE E-state topological parameter Geometrical

SPH Spherosity Geometrical

ASP Asphericity Geometrical

H4u H autocorrelation of lag 4/unweighted GETAWAY

HATS6u Leverage-weighted autocorrelation of lag 6/unweighted GETAWAY

H5m H autocorrelation of lag 5/weighted by atomic masses GETAWAY

H7m H autocorrelation of lag 7/weighted by atomic masses GETAWAY

R8u R autocorrelation of lag 8/unweighted GETAWAY

R6u+ R maximal autocorrelation of lag 6/unweighted GETAWAY

R7m R autocorrelation of lag 7/weighted by atomic masses GETAWAY

R6m+ R maximal autocorrelation of lag 6/weighted by atomic masses GETAWAY

R7m+ R maximal autocorrelation of lag 7/weighted by atomic masses GETAWAY

R6e R autocorrelation of lag 6/weighted by atomic Sanderson electronegativities GETAWAY

R7e R autocorrelation of lag 7/weighted by atomic Sanderson electronegativities GETAWAY

RDF045u Radial Distribution Function � 4.5/unweighted RDF

RDF035m Radial Distribution Function � 3.5/weighted by atomic masses RDF

RDF070m Radial Distribution Function � 7.0/weighted by atomic masses RDF

RDF090m Radial Distribution Function � 9.0/weighted by atomic masses RDF

RDF060e Radial Distribution Function � 6.0/weighted by atomic Sanderson electronegativities RDF

Mor10u 3D-MoRSE � signal 10/unweighted 3D-MoRSE

Mor17u 3D-MoRSE � signal 17/unweighted 3D-MoRSE

Mor30u 3D-MoRSE � signal 30/unweighted 3D-MoRSE

Mor02m 3D-MoRSE � signal 02/weighted by atomic masses 3D-MoRSE

Mor04m 3D-MoRSE � signal 04/weighted by atomic masses 3D-MoRSE

Mor08m 3D-MoRSE � signal 08/weighted by atomic masses 3D-MoRSE

Mor09m 3D-MoRSE � signal 09/weighted by atomic masses 3D-MoRSE

Mor11m 3D-MoRSE � signal 11/weighted by atomic masses 3D-MoRSE

Mor23m 3D-MoRSE � signal 23/weighted by atomic masses 3D-MoRSE

Mor25m 3D-MoRSE � signal 25/weighted by atomic masses 3D-MoRSE

Mor30m 3D-MoRSE � signal 30/weighted by atomic masses 3D-MoRSE

Mor32m 3D-MoRSE � signal 32/weighted by atomic masses 3D-MoRSE

Mor02v 3D-MoRSE � signal 02/weighted by atomic van der Waals volumes 3D-MoRSE

Mor19v 3D-MoRSE � signal 19/weighted by atomic van der Waals volumes 3D-MoRSE

Mor25v 3D-MoRSE � signal 25/weighted by atomic van der Waals volumes 3D-MoRSE

Mor29v 3D-MoRSE � signal 30/weighted by atomic van der Waals volumes 3D-MoRSE

Mor12e 3D-MoRSE � signal 12/weighted by atomic Sanderson electronegativities 3D-MoRSE

X3A Average connectivity index chi-3 Topological

X4A Average connectivity index chi-4 Topological

IC5 Information content index (neighborhood symmetry of 5-order) Topological

CIC5 Complementary information content (neighborhood symmetry of 5-order) Topological

PCR Ratio of multiple path counts to path counts Topological

ATS4m Broto-Moreau autocorrelation of a topological structure � lag 4/weighted by atomic masses 2D autocorrelations

ATS6m Broto-Moreau autocorrelation of a topological structure � lag 6/weighted by atomic masses 2D autocorrelations

MATS7v Moran autocorrelation � lag 7/weighted by atomic van der Waals volumes 2D autocorrelations

MATS7e Moran autocorrelation � lag 7/weighted by atomic Sanderson electronegativities 2D autocorrelations

MATS8e Moran autocorrelation � lag 8/weighted by atomic Sanderson electronegativities 2D autocorrelations

GATS7e Geary autocorrelation � lag 7/weighted by atomic Sanderson electronegativities 2D autocorrelations

G3p 3rd component symmetry directional WHIM index/weighted by atomic polarizabilities WHIM

L2s 2nd component size directional WHIM index/weighted by atomic electrotopological states WHIM

G3s 3rd component symmetry directional WHIM index/weighted by atomic electrotopological states WHIM
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following equation:

PRESS ¼
Xn

i¼1

ðyi;obs � yi;predÞ
2

n� 1
(1)

SSD ¼
Xn

i¼1

ðyi;obs � yi;avgÞ
2

n� 1
(2)

R2
cv ¼ 1�

Pn
i¼1 ðyi;obs � yi;predÞ

2

Pn
i¼1 ðyi;obs � yi;avgÞ

2
¼ 1� PRESS

SSD
(3)

where n is the number of compounds included in the model, yi,obs,
and yi,pred are the experimental, and predicted chemical shifts of
the left-out compound i, respectively and yi,avg is the average
experimental chemical shift of left-in compounds different from i.
The R2

cv values can be considered as a measure of the predictive
power of a model: whereas R2 can always be increased artificially
by adding more parameters, R2

cv decreases if a model is over-
parameterized [45], and is therefore a more meaningful summary
statistic for predictive models. The correlation coefficients for each
subset are presented in last column of Table 4. The cross-validation
results show that the models have PRESS/SSD ratios less than 0.2 or
R2

cv values greater than 0.807.

3.2.2. Odd–even external validation

To further check the prediction ability of the resulting
models, external validation (EV) was also employed. In the EV
procedure applied here, the method proposed by Hawkins and



Table 7
Equations based on only the 36 carbon atoms in calibration sets for each position of the carbon

Position of the carbon Equations calibration sets

C2 CSC2 = 190.6(�4.8) � 45.3(�3.7) R6m+ � 11.4(�1.3) Mor25v + 11.5(�1.9) ATS6m + 47.1(�11.6) H7m � 7.9(�1.6) BEHm8 � 7.4(�2.9) HATS6u

C3 CSC3 = 204.9(�10.1) � 79.9(�9.8) SPH � 47.0(�8.3) JGI1 + 4.6(�1.0) Mor12e + 11.0(�2.4) Mor23m � 42.0(�15.7) G3s

C4 CSC4 = 70.0(�7.7) + 354.3(�24.6) qpos � 1.1(�0.1) RDF070m + 0.01(�0.00) TIE + 2.6(�0.6) Mor04m � 10.4(�1.8) Mor19v

C5 CSC5 = 2214.6(�335.4) + 2521.2(�172.0) qpos � 867.1(�101) BEHm3 + 0.09(�0.01) TIE + 39.7(�9.8) H4u � 154.6(�53.2) R6u+

C6 CSC6 = 2129.4(�182) � 1924.4(�159.2) qpos + 102.3(�17.7) ASP + 365.2(�37.7) H5m � 520.7(�62.9) BEHv4

C7 CSC7 = 102.4(�10.2) + 8.7(�0.7) RDF070m + 69.4(�9.5) Mor08m + 6.3(�1.1) Mor02m + 19.2(�6.7) R7e + 0.03(�0.01) TIE

C8 CSC8 = 483.4(�48.7) � 0.07(�0.01) TIE + 67.4(�7.0) Mor25m � 22.4(�2.8) Mor02v + 2.7(�0.6) RDF045u � 147.4(�62.4) G3p

C9 CSC9 = 32.5(�2.2) + 1147.1(�175.2) X4A + 91.4(�9.5) R7m � 69.2(�10.2) Mor30m + 23.7(�3.4) Mor30u � 36.1(�10.0) ATS4m

C10 CSC10 = 153.6(�7.3) � 136.1(�19.4) ATS4m + 69.8(�7.5) R6e � 0.02(�0.01) TIE + 25.5(�7.2) Mor09m + 83.8(�18.5) Mor29v

C10 CSC10 = 332.8(�12.0) � 13.9(�0.8) PCR + 0.3(�0.1) RDF060e � 5.1(�0.9) GATS7e + 5.3(�1.0) Mor04m � 2.9(�1.1) Mor10u

C20 CSC20 = �145.0(�6.3) � 8.7(�0.6) Mor02m + 28.0(�2.4) RDF035m + 1852.7(�314.2) X3A + 30.7(�7.0) GGI5

C30 CSC30 = �15.9(�1.9) + 111.9(�5.7) MATS7e + 16.1(�1.3) L2s + 42.1(�6.9) Mor11m + 25.4(�4.2) IC5

C40 CSC40 = �8.0(�0.8) + 170.2(�11.0) ASP + 25.5(�2.4) GATS7e + 42.0(�6.9) MATS7v + 17.9(�4.3) MATS8e � 30.0(�11.6) Mor32m

C50 CSC50 = 390.8(�25.5) + 73.1(�6.3) R8u � 63.9(�5.1) IC5 + 56.9(�6.4) MATS7e + 21.9(�3.8) Mor17u + 120.9(�22.7) R6m+

C60 CSC60 = 143.5(�1.4) � 4.9(�0.6) RDF090m � 223.6(�21.6) R7m+ � 13.6(�3.1) CIC5

Table 8
Statistical parameters of the QSPR models obtained using different molecular descriptors

Position of the carbon Calibration set Prediction set

RMS REP F R2 R2
cv RMS REP R2

C2 0.41 0.25 29.68 0.8600 0.7221 0.32 0.20 0.9309

C3 0.64 0.61 57.90 0.9062 0.8600 1.10 1.05 0.7871

C4 0.72 0.40 71.21 0.9231 0.8663 0.59 0.33 0.9526

C5 6.22 4.73 64.21 0.9146 0.8427 2.32 1.74 0.9805

C6 5.94 4.86 74.60 0.9058 0.8696 3.78 3.32 0.8377

C7 4.23 2.92 54.69 0.9194 0.8849 3.06 2.02 0.9641

C8 4.62 4.12 38.14 0.8640 0.7874 3.39 3.06 0.9237

C9 1.39 0.91 47.54 0.8866 0.8437 2.48 1.60 0.7107

C10 2.26 1.95 60.77 0.9104 0.8688 1.59 1.38 0.9608

C10 1.30 1.05 72.45 0.9241 0.8778 0.94 0.76 0.9347

C20 3.30 2.72 150.80 0.9509 0.9340 2.90 2.44 0.9618

C30 3.23 2.41 178.85 0.9584 0.9426 2.68 1.97 0.9698

C40 3.30 2.27 97.04 0.9267 0.8940 3.62 2.47 0.9215

C50 2.99 2.37 146.69 0.9608 0.9407 3.77 3.05 0.9382

C60 0.41 0.25 29.68 0.8600 0.9360 0.32 0.20 0.9309

Table 9
Statistical parameters obtained using GA-MLR model for prediction 13C chemical shifts of flavone derivatives

R2 RMS REP R2
cv Na

Total 0.9821 3.09 2.32 0.9750 750

Calibration set 0.9790 3.35 2.51 0.9675 540

Prediction set 0.9882 2.53 1.91 – 210

a N denotes of the number of carbon atom centers.

Table 6
Statistical parameters of the overfitting and predictive ability of the models

Position of the carbon Odd samples Even samples

RMSERS R2
RS RMSEHO R2

HO RMSERS R2
RS RMSEHO R2

HO

C2 0.25 0.8632 0.28 0.8254 0.20 0.9005 0.25 0.8530

C3 0.59 0.9036 0.88 0.7942 0.76 0.8759 0.94 0.8121

C4 0.19 0.9832 0.45 0.9332 0.42 0.9200 0.77 0.7450

C5 3.27 0.9532 4.97 0.8965 4.07 0.9285 5.50 0.8709

C6 4.91 0.8862 5.88 0.8621 3.48 0.9426 4.36 0.9145

C7 2.53 0.9350 3.47 0.8843 1.94 0.9624 4.05 0.8630

C8 3.38 0.9030 6.25 0.6787 2.97 0.9299 4.85 0.8398

C9 0.98 0.8766 1.32 0.8434 1.02 0.8646 1.28 0.8017

C10 1.02 0.9734 2.40 0.8558 1.99 0.8958 2.50 0.8419

C10 0.95 0.9397 1.31 0.9002 0.84 0.9326 1.11 0.9004

C20 3.06 0.9335 3.47 0.9150 1.84 0.9781 2.38 0.9655

C30 2.46 0.9567 3.00 0.9373 1.65 0.9785 2.64 0.9561

C40 1.97 0.9450 2.51 0.9121 2.31 0.9120 2.73 0.8825

C50 2.47 0.9565 3.09 0.9359 2.10 0.9688 2.77 0.9487

C60 0.99 0.9825 1.41 0.9768 1.70 0.9480 2.06 0.9429
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Fig. 2. Plot of the predicted chemical shifts by GA-MLR for calibration set (&) and

validation set (&) against the experimental values. The dash line is the ideal fit to

the straight line.

Fig. 1. Plot of the predicted chemical shifts by GA-MLR (LOO-CV) for the total data

set of 50 flavone derivatives used in this study against the experimental values. The

dotted line is the ideal fit to the straight line.

Fig. 3. Calculated errors vs. experimental values of flavone derivatives carbon-13

chemical shifts (ppm) for the calibration set (&) and prediction set (&) using GA-

MLR model.
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co-workers [45,46] was used. To do this, the data were sorted in
the ascending order of chemical shift values and then divided
into two sets namely odd-number and even-number chemical
shifts. This way of splitting ensures that the distribution of
chemical shift values of the two subsets were very similar. The
QSPR models were fitted to the odd-number and even-number
samples separately and the resulted fitness were assessed by
applying QSPR models to both samples. To compare the
estimation abilities of the models, two statistical parameters
namely root mean squares error (RMSE) and R2, were calculated.
The same data set (i.e. ‘calibration set’) that was already used to
fit the models was employed to determine resubstitution
Fig. 4. Simulated and observed spectra of three molecules in the prediction set (A)

20-hydroxyflavone, (B) 5,7,30 ,40-tetrahydroxyflavone, and (C) 7,8-dihydroxy-30 ,40-

dimethoxyflavone.
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parameters, i.e. RMSERS and R2
RS and to determine holdout

parameters, i.e. RMSEHO and R2
HO for the other data set which

was not involved in the fitting. The resubstitution statistical
parameters of the samples bases their predictions on the
regression fitted to those samples, and holdout statistical
parameters bases their predictions on the regression fitted to
the other samples. Table 6 summarizes these statistical
parameters archived by this approach. As can be seen, in the
odd- and even-number samples, the resubstitution and holdout
Table 10
Experimental and calculated values of chemical shifts for the molecules included in th

(A) 20-hydroxyflavone, (B) 5,7,30 ,40-tetrahydroxyflavone, and (C) 7,8-dihydroxy-30 ,40-dim
RMSE are very similar, indicating that same sample and other
sample predictions are equally precise.

3.2.3. Calibration set and prediction set

In addition to the traditional LOO-CV and odd–even external
validation, further attempts were made to examine the quality of
the resulted models. In this case, before each training run, all data
sets were split randomly into two separate sections: the calibration
and external prediction sets. Out of 50 compounds, 36 compounds
e prediction set

ethoxyflavone.
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were used for calibration set and 14 compounds were used as
external validation. The compounds that constituted the calibra-
tion and validation sets are clearly presented in Table 2. The
validation examples are marked as bold font. The calibration set
was used to obtain the best fit equation of MLR and the validation
set was used to monitor overfitting the MLR models. The resulted
GA-MLR models for 36 compounds were the same as those
obtained for the entire set of 50 flavonoid derivatives in each
subset subject to using descriptors of the 50 compounds models to
provide for prediction set of 14 compounds. Each of related
calibration set equations is indexed in Table 7, and those statistical
parameters for the best-fitted models are also presented in Table 8.

3.2.4. Overall prediction ability

Each individual flavonoid compound considered here has 15
carbon atom centers, that is, altogether we have 750 carbon atoms.
In order to obtain an overall estimate about the prediction ability of
the resulted QSPR models, we plotted all cross-validated predicted
values of 13C chemical shifts of different carbon atoms against
the experimental values in a single graph. The corresponding
statistical parameters are calculated and results are presented in
Table 9. The statistical results indicate that the overall model has
the capability of predicting and has low level space. These results
are presented in Fig. 1. Based on the models introduced in the
previous stages, all 50 compounds were divided into two parts, i.e.,
calibration and prediction sets, which contained 36 (including 540
carbon centers) and 14 (including 210 carbon centers) compounds,
respectively. The plot of predicted chemical shift against the
corresponding experimental values for all carbon centers of
the prediction set molecules is represented in Fig. 2 and the
corresponding statistical quantities are listed in Table 9. The
achieving respective values of 0.9882, 2.523, and 1.905 ppm for
parameters R2, RMS and REP demonstrate the high prediction
power of the proposed models.

The distribution of calculation errors vs. experimental values of
chemical shifts are plotted in Fig. 3. As is observed, some carbon
atom centers represent significant deviation from the regression
line, where the largest overestimations of chemical shifts 18.7 ppm
are observed for the calibration carbon atoms C6 of 8,30,40,50-
tetrahydroxyflavone, and the largest underestimations �18.7 ppm
for the calibration carbon atoms C4 of 8,30,40,50-tetrahydroxy-
flavone, C2 of 8,30,40,50-tetrahydroxyflavone (�16.1 ppm), as well
as for the prediction carbon atom centers C30 of 7,8,40-trihydroxy-
flavone (9.9 ppm). The two dotted lines above and below the zero
line indicate a double standard deviation of regression (�2 � 3.14),
and roughly 94.13% of the residuals are lied between these two lines.
Since no distinct pattern found, it is turned out that no relationship
exists between the residual values and the calculated carbon-13
chemical shift values.

The accuracy of the models that have been proposed can be seen
from Fig. 4, which compares the simulated and observed spectra of
three molecules, i.e., 20-hydroxyflavone, 5,7,30,40-tetrahydroxyfla-
vone, and 7,8-dihydroxy-30,40-dimethoxyflavone in the prediction
set. An outstanding visual similarity exists between the simulated
and observed spectra of the three molecules in the prediction set.
The overall spectral errors between the two spectra for these
compounds were�0.807, 0.407 and�0.420 ppm, respectively. The
differences between the experimental and calculated values of
the chemical shifts of these molecules are also given in Table 10 for
the carbon centers.

4. Conclusions

Although numerous 13C NMR spectra are being generated each
day, their interpretation has become a hindrance to progress in the
identification process. One way to deal with this difficulty is
developing computer-assisted models. In this work, a novel QSPR
tool, GA-MLR that combines a genetic algorithm with multiple
linear regression is performed to relate the structural parameters
of 50 hydroxy, polyhydroxy and methoxy substituted flavonoid
derivatives data set to their 13C NMR spectra. MLR with GA
produced more predictive, informative and significantly improved
QSPR models. The use of physicochemical, topological, and
geometric descriptors was revealed to be quite a successful
strategy. The effectiveness of the evolutionary programming
algorithm is demonstrated by the selection of the best set of
molecular descriptors. The validation and predictive ability of the
models were examined by both the leave-one-out cross-validation
and external validation. Both methods indicated that the resulting
multiparametric QSPR models possess high prediction ability and
low overfitting. The high correlation coefficient of 0.9982 and low
root mean squares error of 2.53 ppm and relative prediction error
of 1.91 ppm for the prediction set reveals an excellent prediction
ability of the generated model for 13C chemical shifts of flavonoid
derivatives.
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Ph.D. Thesis, der Technischen Universität Darmstadt, Germany, 2004, http://
deposit.d-nb.de/cgi-bin/dokserv?idn=97036184x and http://elib.tu-darmstadt.
de/diss/000409.

[41] J. Olivero, T. Garcia, P. Payares, R. Vivas, D. Diaz, E. Daza, P. Geerliger, Molecular
structure and gas chromatographic retention behavior of the components of
ylang–ylang oil, J. Pharm. Sci. 86 (1997) 625–630.

[42] B. Hemmateenejad, Correlation ranking procedure for factor selection in PC-ANN
modeling and application to ADMETox evaluation, Chemomet. Intell. Lab. Syst. 75
(2005) 231–245.

[43] B. Hemmateenejad, M.A. Safarpour, F. Taghavi, Application of ab initio theory for
the prediction of acidity constants of some 1-hydroxy-9,10-anthraquinone deri-
vatives using genetic neural network, J. Mol. Struct. (Theochem) 635 (2003)
183–190.

[44] R. Ghavami, A. Najafi, B. Hemmateenejad, Chemometrics-assisted spectrophoto-
metric methods for simultaneous determination and complexation study of
Fe(III), Al(III) and V(V) with morin in micellar media, Spectrochim. Acta Part
A: Mol. Biomol. Spec., in press.

[45] D.M. Hawkins, The problem of overfitting, J. Chem. Inf. Comput. Sci. 44 (2004) 1–
12.

[46] D.M. Hawkins, S.C. Basak, D. Mills, Assessing model fit by cross-validation, J.
Chem. Inf. Comput. Sci. 43 (2003) 579–586.

http://deposit.d-nb.de/cgi-bin/dokserv%3Fidn=97036184x
http://deposit.d-nb.de/cgi-bin/dokserv%3Fidn=97036184x
http://elib.tu-darmstadt.de/diss/000409
http://elib.tu-darmstadt.de/diss/000409

	Genetic algorithm as a variable selection procedure for the simulation �of 13C nuclear magnetic resonance spectra of flavonoid derivatives using �multiple linear regression
	Introduction
	Materials and methods
	Software
	Experimental database set
	Calculation of structural descriptors
	Selection of structural descriptors

	Results and discussions
	GA-MLR modes
	Model prediction-validation
	Leave-one-out cross-validation
	Odd-even external validation
	Calibration set and prediction set
	Overall prediction ability


	Conclusions
	References


